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 Statistical models which are data driven and 

analyst derived are fundamentally different from 

models arising from physical sciences that „explain‟ 

natural phenomena using mathematical models.   

 Most multivariable models in clinical and 

epidemiology research consider predictor variables as 

linear terms or as dummy variables after categorization 

of continuous variables. Clinically it may be desirable 

to classify patients into different prognosis groups e.g. 

poor, moderate and good, or diagnosis groups e.g. 

benign or malignant tumour. Categorization of 

continuous variables assumes homogeneity of the trait 

under consideration within each specified category. 

This may however be unrealistic especially when few 

categories are used. Although individuals close to but 

on opposite sides of the cutpoint are expected to be 

very similar, categorizing assumes they have very 

different outcomes. It is unlikely that there will be 

consensus on the choice of cutpoints when creating 

categorical groups (1). Distributional measures such as 

median, upper or lower quartiles, and rounded 

cutpoints as is usually done in categorized age groups 

(e.g. 20 - 24,25 -29,…) are often used. Categorization 

may result in overparameterized models and there is 

usually loss of efficiency (2). Important relevant 

predictor variables are sometimes missed in prognostic 

or diagnostic models because the true functional form 

of a predictor variable may be non-linear. Medical 

knowledge may dictate that the relationship between 

an outcome and a predictor variable is monotonic or 

there is some levelling off (asymptote) at high or lower 

values of the predictor.  Categorizing confounding 

variables may result in residual confounding; where 

the bias due to confounding is not substantially 

removed. The percentage of bias removed by 

categorizing continuous confounders under certain 

distributional assumptions and for monotonic relations 

has been previous estimated at 64%, 79%, 86%, 90%, 

and 92% for 2, 3, 4, 5 and 6 cut-off categories 

respectively (3). 
 

Investigate functional forms of continuous 

predictor variables 
 

 It may be important to differentiate between 

predictors of main interest and confounders depending 

on the aim of the study. Fractional polynomials (FP) 

have been proposed in epidemiological studies to 

investigate functional forms of continuous predictor 

variables (4). Final FP models usually have fewer 

parameters compared to step function models 

especially when many confounders are considered.

   
 

The general form of a FP model is   

 

for j = 0 to d,  gj(X) is Xpj for pj ≠ pj-1 and gj-1(X) is Xpln(X) for pj = pj-1 and Xp denote the Box Tidwell transformation defined as 

Xp if pj ≠ pj-1 and ln(X) if pj = 0 4. The coefficients and powers of the model are contained in the vectors β = (β1, …,βd) and p = 

(p1, …,pd) such that p1 < … < pd. The power list which is usually restricted to a determined set of integers and non-integers: (-3, -

2, -1,-0.5,0,0.5,1,2,3 ) includes the reciprocal, logarithm, square root, square and repeated-powers transformations (4). η is an 

appropriate link function. A wide range of regression commands that cover a number of link functions are available in widely 

used statistical software such as SAS, STATA and R. These include linear, logistic, cox-regression, conditional logistic, 

generalized linear models, ordinal logistic, ordinal probit, poisson, probit, quintile regression, parametric regression and 

generalized estimating equations (5). A FP model of degree d has 2d degrees of freedom (DF) (excluding β0); 1 DF for each β and 

1 degree for each power. The best first-degree FP for X is that with the smallest deviance (minus twice the maximum log-

likelihood) among models with one predictor variables. Similarly the best second-degree FP is the model with the smallest 

deviance among those with all possible pairs of powers from the power list. The second degree FP with minimal deviance is 

preferred at the α % level to the best first-degree FP if the deviance difference exceeds the (100-α) percentile of χ2 with 2 DF. 

Otherwise, the first-degree FP is preferred to a linear term model if the corresponding deviance difference exceeds the (100 – α) 

percentile of χ2 on 1 DF.  
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 Applications of FP modelling have been 

demonstrated in a number of studies (5-7). FP provide 

solutions to serious problems associated with arbitrary 

categorization. These models provide sufficient power 

to detect strong non-linearities which should be 

accommodated in clinical and epidemiologic research. 

FP models are also relatively simple, a requisite for 

statistically stable models. Second or lower degree 

models reduce the likelihood of overfitting. Some 

biological relationships require that functions are 

monotonic or that there is an asymptote. This type of 

medical knowledge ought to be incorporated in the 

statistical analysis of these studies. Incorporating this 

knowledge can easily be achieved by using 1
st
 order 

FP (simple power and log-transformations), or 

applying transformations such as the negative 

exponential transformation before applying FPs as 

described by Sabuerbrei et. al. (8).  

 It is important to extract as much information as 

possible from predictors and responses, while trying to 

avoid overfitting. Retaining continuous variables in 

this form in models is essential to avoid loss of 

information.  Predictors that are not significant in 

univariate analysis should not be excluded before their 

functional form with the outcome and other important 

variables in models are fully explored (9). It is 

preferable to keep variables continuous rather than 

categorize them since much more predictive 

information is retained. Royston et. al. believe that 

dichotomization of continuous data is unnecessary for 

statistical analysis and in particular should not be 

applied to explanatory variables in regression models 

(10).  
 

Control for continuous confounders 
 

 In order to appropriately control for confounding 

effects, the functional form of confounders need to be 

investigated. FP are preferred to step functions 

(categorizing) because they better control for 

confounder effect within strata as well as across strata. 

Greenland advises that epidemiological analysis of 

dose response and trends as well as methods for 

controlling of continuous confounders should be 

expanded beyond simple categorical and linear (single 

coefficient) approaches to include flexible curves that 

make use of intra-category information (11). In an 

editorial Weinberg stated that approaches based on FP 

or regression splines merit a greater role in 

epidemiology, and should have a lasting influence on 

epidemiological practice (12).  Given the amount of 

„noise‟ which typically obscures risk relationships in 

epidemiology, 1
st
 and 2

nd
 order FP will provide 

sufficiently accurate approximations to unknown 

realities for most purposes (11). The determination of 

functional form is particularly important in studies 

where a variable may have a dual role as a confounder 

and as a risk factor.   

 Fitted multivariable models should be as simple as 

possible. Thus for continuous variables, the starting 

point should be to consider linear models. FP models 

(preferably of degree 1 or 2) should be considered if 

there is sufficient evidence of non-linearity within the 

data or when there is prior medical knowledge 

suggesting non-linear functional forms. Care should be 

taken when examining the shape and location of FP 

curves since they can strongly be influenced by one or 

a few data points. In particular fitted values for a point 

can be strongly influenced by data that are far away on 

the graph. It is important to use accurate models 

developed by using appropriate data sets in developing 

clinical prognostic and diagnostic indices. The model 

should easily be communicated mathematically, fit the 

data well, be parsimonious and consistent with 

medical knowledge.  Bootstrap replication can be used 

to investigate the stability of the functional form of 

selected models. 

 Alternatives to FP models include local regression 

models such as splines and kernel methods. 

Generalized Additive Models (GAM) have been used 

to check that important features of data are not missed 

by parametric models such as FP models (8). Royston 

(2000) proposes getting a sense of the functional form 

of predictor variables on outcome variables using non-

paramatric methods before fitting parametric models 

whose fitted values agree adequately with those from 

the non-parametric models (13). These non-parametric 

models are usually flexible and their confidence 

intervals are generally wider and probably more 

realistic than those of parametric models. They may be 

used in exploratory data analysis and in helping one to 

select appropriate parametric models (4). It is however 

not easy to report the mathematical models for these 

non-parametric curves because they are very complex, 

and reporting of results is by extensive tabulation and 

graphs. Data dependence on the final model is more 

marked in non-parametric models than for parametric 

models.  

 As in all multivariable modelling, issues such as 

missing data have to be considered. Missing data are 

usually directly or indirectly related to disease 

characteristics, including the outcome under study. 

Thus exclusion of all individuals with a missing value 

leads not only to loss of statistical power of the model 

but often to incorrect estimates of the predictive power 

of the model and specified predictors (14).   
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